3.234 \(\int \frac {\sec (e+f x) \sqrt {a+a \sec (e+f x)}}{\sqrt {c+d \sec (e+f x)}} \, dx\)

Optimal. Leaf size=61 \[ \frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {d} f} \]

[Out]

2*arctanh(a^(1/2)*d^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2))*a^(1/2)/f/d^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {3980, 206} \[ \frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {d} f} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*Sqrt[a + a*Sec[e + f*x]])/Sqrt[c + d*Sec[e + f*x]],x]

[Out]

(2*Sqrt[a]*ArcTanh[(Sqrt[a]*Sqrt[d]*Tan[e + f*x])/(Sqrt[a + a*Sec[e + f*x]]*Sqrt[c + d*Sec[e + f*x]])])/(Sqrt[
d]*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3980

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_)], x_Symbol] :> Dist[(-2*b)/f, Subst[Int[1/(1 - b*d*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sq
rt[c + d*Csc[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[
c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec (e+f x) \sqrt {a+a \sec (e+f x)}}{\sqrt {c+d \sec (e+f x)}} \, dx &=-\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{1-a d x^2} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}}\right )}{f}\\ &=\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 102, normalized size = 1.67 \[ \frac {\sqrt {2} \sec \left (\frac {1}{2} (e+f x)\right ) \sqrt {a (\sec (e+f x)+1)} \sqrt {c \cos (e+f x)+d} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c \cos (e+f x)+d}}\right )}{\sqrt {d} f \sqrt {c+d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*Sqrt[a + a*Sec[e + f*x]])/Sqrt[c + d*Sec[e + f*x]],x]

[Out]

(Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[d]*Sin[(e + f*x)/2])/Sqrt[d + c*Cos[e + f*x]]]*Sqrt[d + c*Cos[e + f*x]]*Sec[(e
+ f*x)/2]*Sqrt[a*(1 + Sec[e + f*x])])/(Sqrt[d]*f*Sqrt[c + d*Sec[e + f*x]])

________________________________________________________________________________________

fricas [B]  time = 0.67, size = 307, normalized size = 5.03 \[ \left [\frac {\sqrt {\frac {a}{d}} \log \left (-\frac {8 \, a c d \cos \left (f x + e\right ) + {\left (a c^{2} - 6 \, a c d + a d^{2}\right )} \cos \left (f x + e\right )^{3} + 4 \, {\left (2 \, d^{2} \cos \left (f x + e\right ) + {\left (c d - d^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {a}{d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) + d}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + 8 \, a d^{2} + {\left (a c^{2} + 2 \, a c d - 7 \, a d^{2}\right )} \cos \left (f x + e\right )^{2}}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {\sqrt {-\frac {a}{d}} \arctan \left (-\frac {2 \, d \sqrt {-\frac {a}{d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) + d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}{{\left (a c - a d\right )} \cos \left (f x + e\right )^{2} + 2 \, a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}\right )}{f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(a/d)*log(-(8*a*c*d*cos(f*x + e) + (a*c^2 - 6*a*c*d + a*d^2)*cos(f*x + e)^3 + 4*(2*d^2*cos(f*x + e) +
 (c*d - d^2)*cos(f*x + e)^2)*sqrt(a/d)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(f
*x + e))*sin(f*x + e) + 8*a*d^2 + (a*c^2 + 2*a*c*d - 7*a*d^2)*cos(f*x + e)^2)/(cos(f*x + e)^3 + cos(f*x + e)^2
))/f, sqrt(-a/d)*arctan(-2*d*sqrt(-a/d)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(
f*x + e))*cos(f*x + e)*sin(f*x + e)/((a*c - a*d)*cos(f*x + e)^2 + 2*a*d + (a*c + a*d)*cos(f*x + e)))/f]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sec \left (f x + e\right ) + a} \sec \left (f x + e\right )}{\sqrt {d \sec \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sec(f*x + e) + a)*sec(f*x + e)/sqrt(d*sec(f*x + e) + c), x)

________________________________________________________________________________________

maple [B]  time = 2.19, size = 301, normalized size = 4.93 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}}\, \sqrt {\frac {d +c \cos \left (f x +e \right )}{\cos \left (f x +e \right )}}\, \cos \left (f x +e \right ) \left (-1+\cos \left (f x +e \right )\right ) \left (\ln \left (-\frac {2 \left (\sqrt {2}\, \sqrt {-d}\, \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{1+\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )-c \sin \left (f x +e \right )-d \sin \left (f x +e \right )-c \cos \left (f x +e \right )+d \cos \left (f x +e \right )+c -d \right )}{-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}\right )-\ln \left (\frac {2 \sqrt {2}\, \sqrt {-d}\, \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{1+\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )-2 c \sin \left (f x +e \right )-2 d \sin \left (f x +e \right )+2 c \cos \left (f x +e \right )-2 d \cos \left (f x +e \right )-2 c +2 d}{1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}\right )\right ) \sqrt {2}}{f \sin \left (f x +e \right )^{2} \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{1+\cos \left (f x +e \right )}}\, \sqrt {-d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x)

[Out]

1/f*(a*(1+cos(f*x+e))/cos(f*x+e))^(1/2)*((d+c*cos(f*x+e))/cos(f*x+e))^(1/2)*cos(f*x+e)*(-1+cos(f*x+e))*(ln(-2*
(2^(1/2)*(-d)^(1/2)*(-2*(d+c*cos(f*x+e))/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)-c*sin(f*x+e)-d*sin(f*x+e)-c*cos(f*x+
e)+d*cos(f*x+e)+c-d)/(-1+cos(f*x+e)+sin(f*x+e)))-ln(2*(2^(1/2)*(-d)^(1/2)*(-2*(d+c*cos(f*x+e))/(1+cos(f*x+e)))
^(1/2)*sin(f*x+e)-c*sin(f*x+e)-d*sin(f*x+e)+c*cos(f*x+e)-d*cos(f*x+e)-c+d)/(1-cos(f*x+e)+sin(f*x+e))))/sin(f*x
+e)^2/(-2*(d+c*cos(f*x+e))/(1+cos(f*x+e)))^(1/2)*2^(1/2)/(-d)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sec \left (f x + e\right ) + a} \sec \left (f x + e\right )}{\sqrt {d \sec \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sec(f*x + e) + a)*sec(f*x + e)/sqrt(d*sec(f*x + e) + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}}{\cos \left (e+f\,x\right )\,\sqrt {c+\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(1/2)/(cos(e + f*x)*(c + d/cos(e + f*x))^(1/2)),x)

[Out]

int((a + a/cos(e + f*x))^(1/2)/(cos(e + f*x)*(c + d/cos(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )} \sec {\left (e + f x \right )}}{\sqrt {c + d \sec {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))*sec(e + f*x)/sqrt(c + d*sec(e + f*x)), x)

________________________________________________________________________________________